130 research outputs found

    There is a VaR beyond usual approximations

    Get PDF
    Basel II and Solvency 2 both use the Value-at-Risk (VaR) as the risk measure to compute the Capital Requirements. In practice, to calibrate the VaR, a normal approximation is often chosen for the unknown distribution of the yearly log returns of financial assets. This is usually justified by the use of the Central Limit Theorem (CLT), when assuming aggregation of independent and identically distributed (iid) observations in the portfolio model. Such a choice of modeling, in particular using light tail distributions, has proven during the crisis of 2008/2009 to be an inadequate approximation when dealing with the presence of extreme returns; as a consequence, it leads to a gross underestimation of the risks. The main objective of our study is to obtain the most accurate evaluations of the aggregated risks distribution and risk measures when working on financial or insurance data under the presence of heavy tail and to provide practical solutions for accurately estimating high quantiles of aggregated risks. We explore a new method, called Normex, to handle this problem numerically as well as theoretically, based on properties of upper order statistics. Normex provides accurate results, only weakly dependent upon the sample size and the tail index. We compare it with existing methods.Comment: 33 pages, 5 figure

    Level crossings and other level functionals of stationary Gaussian processes

    Full text link
    This paper presents a synthesis on the mathematical work done on level crossings of stationary Gaussian processes, with some extensions. The main results [(factorial) moments, representation into the Wiener Chaos, asymptotic results, rate of convergence, local time and number of crossings] are described, as well as the different approaches [normal comparison method, Rice method, Stein-Chen method, a general mm-dependent method] used to obtain them; these methods are also very useful in the general context of Gaussian fields. Finally some extensions [time occupation functionals, number of maxima in an interval, process indexed by a bidimensional set] are proposed, illustrating the generality of the methods. A large inventory of papers and books on the subject ends the survey.Comment: Published at http://dx.doi.org/10.1214/154957806000000087 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the capacity functional of excursion sets of Gaussian random fields on R2\R^2

    Get PDF
    When a random field (Xt, t∈R2)(X_t, \ t\in {\mathbb R}^2) is thresholded on a given level uu, the excursion set is given by its indicator  1[u,∞)(Xt)~1_{[u, \infty)}(X_t). The purpose of this work is to study functionals (as established in stochastic geometry) of these random excursion sets, as e.g. the capacity functional as well as the second moment measure of the boundary length. It extends results obtained for the one-dimensional case to the two-dimensional case, with tools borrowed from crossings theory, in particular Rice methods, and from integral and stochastic geometry.Comment: 19 page

    The impact of systemic risk on the diversification benefits of a risk portfolio

    Get PDF
    Risk diversification is the basis of insurance and investment. It is thus crucial to study the effects that could limit it. One of them is the existence of systemic risk that affects all the policies at the same time. We introduce here a probabilistic approach to examine the consequences of its presence on the risk loading of the premium of a portfolio of insurance policies. This approach could be easily generalized for investment risk. We see that, even with a small probability of occurrence, systemic risk can reduce dramatically the diversification benefits. It is clearly revealed via a non-diversifiable term that appears in the analytical expression of the variance of our models. We propose two ways of introducing it and discuss their advantages and limitations. By using both VaR and TVaR to compute the loading, we see that only the latter captures the full effect of systemic risk when its probability to occur is lowComment: 17 pages, 5 tableau

    On the second moment of the number of crossings by a stationary Gaussian process

    Full text link
    Cram\'{e}r and Leadbetter introduced in 1967 the sufficient condition r′′(s)−r′′(0)s∈L1([0,δ],dx),δ>0,\frac{r''(s)-r''(0)}{s}\in L^1([0,\delta],dx),\qquad \delta>0, to have a finite variance of the number of zeros of a centered stationary Gaussian process with twice differentiable covariance function rr. This condition is known as the Geman condition, since Geman proved in 1972 that it was also a necessary condition. Up to now no such criterion was known for counts of crossings of a level other than the mean. This paper shows that the Geman condition is still sufficient and necessary to have a finite variance of the number of any fixed level crossings. For the generalization to the number of a curve crossings, a condition on the curve has to be added to the Geman condition.Comment: Published at http://dx.doi.org/10.1214/009117906000000142 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    What is the best risk measure in practice? A comparison of standard measures

    Full text link
    Expected Shortfall (ES) has been widely accepted as a risk measure that is conceptually superior to Value-at-Risk (VaR). At the same time, however, it has been criticised for issues relating to backtesting. In particular, ES has been found not to be elicitable which means that backtesting for ES is less straightforward than, e.g., backtesting for VaR. Expectiles have been suggested as potentially better alternatives to both ES and VaR. In this paper, we revisit commonly accepted desirable properties of risk measures like coherence, comonotonic additivity, robustness and elicitability. We check VaR, ES and Expectiles with regard to whether or not they enjoy these properties, with particular emphasis on Expectiles. We also consider their impact on capital allocation, an important issue in risk management. We find that, despite the caveats that apply to the estimation and backtesting of ES, it can be considered a good risk measure. As a consequence, there is no sufficient evidence to justify an all-inclusive replacement of ES by Expectiles in applications. For backtesting ES, we propose an empirical approach that consists in replacing ES by a set of four quantiles, which should allow to make use of backtesting methods for VaR. Keywords: Backtesting; capital allocation; coherence; diversification; elicitability; expected shortfall; expectile; forecasts; probability integral transform (PIT); risk measure; risk management; robustness; value-at-riskComment: 27 pages, 1 tabl
    • …
    corecore